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Abstract

This study examined the effects of binge-like ethanol (ETOH) exposure in neonatal rats on a cerebellar-mediated balance task, and the ability
of agmatine, an n-methyl-d-aspartate receptor (NMDAR) modulator, to reverse such effects. Five neonatal treatments groups were used, including
ETOH (6.0 g/kg/day), AG (20 mg/kg), ETOH plus AG (6.0 g/kg/day and 20 mg/kg), a maltose control, and a non-treated control. Ethanol was
administered via oral intubation twice daily for eight days, (AG was administered with the last ETOH intubation only). Two exposure periods were
used; PND 1-8 or PND 8-15. On PND 31-33, balance performance on a single dowel was tested. Treatment with AG during withdrawal in ETOH
exposed animals improved performance relative to ETOH alone among the PND 1-8 exposure period. ETOH exposure during the 2nd postnatal
week did not impair balance. These findings provide further support that exposure to ETOH during critical developmental periods can impair
performance on a cerebellar-dependent balance task. Of perhaps greater significance, co-administration of agmatine reduced these deficits
suggesting that NMDA modulation via polyamine blockade may provide a novel approach to attenuating damage associated with binge-like
ETOH consumption.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Ethanol abuse during pregnancy can cause permanent brain
damage, resulting in behavioral, social, and cognitive dysfunc-
tions (Hannigan and Armant, 2000). Such impairments can
range from the more extreme Fetal Alcohol Syndrome (FAS) to
more subtle fetal alcohol effects. All of these fit the umbrella
term Fetal Alcohol Spectrum Disorder (FASD). The incidence
of FASD has been reported to be approximately 9.1/1000 live
births (Sampson et al., 1997) with an estimated annual cost of
3.6 billion dollars (Lupton et al., 2004).

Among the reports of FASD-associated impairments, defi-
ciencies in motor skills are common, including delayed motor
development, poor eye-hand coordination and fine motor
dysfunction. Additionally, problems with balance in children
exposed to ethanol prenatally have been noted (Kyllerman et al.,
1985; Streissguth et al., 1980). Autopsy, MRI, and PET studies
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have associated these deficits with alterations in cerebellar
volume and function (Riley et al., 2004; Riley andMcGee, 2005;
Roebuck et al., 1998).

Animal models have served as useful tools in the investigation
of the effects of ethanol on the developing brain (Driscoll et al.,
1990; Green, 2004; Tabakoff and Hoffman, 2000; Thomas and
Riley, 1998; West et al., 1990; West and Goodlett 1990). In rat
cerebellum, neonatal ethanol exposure produces a significant,
dose-dependent loss of Purkinje cells. This neonatal exposure
model is used to study a period of CNS development that overlaps
the human 3rd trimester “brain growth spurt” (Dobbing and
Sands, 1979). Reports of deficits in balance and other cerebellar
type tasks resulting from neonatal ethanol exposure are common
(Goodlett et al., 1991; Klintsova et al., 1998; Klintsova et al.,
2000; Thomas et al., 1996). A particularly sensitive develop-
mental period appears to span postnatal days (PND) 4-6 (Goodlett
et al., 1998; Thomas et al., 1998). Behavioral tests of cerebellar
function aswell as stereological counts of cerebellar Purkinje cells
have demonstrated that ethanol exposure on PND 4-5 results in
more severe deficits than PND 8-9 exposure (Thomas et al.,
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1998), suggesting that the first neonatal week is a particularly
sensitive period for ethanol's effects on the developing
cerebellum.

A number of mechanisms have been proposed to explain
how prenatal ethanol exposure affects the developing CNS
(Goodlett et al., 2005; Riley et al., 2001). One mechanism that
has received considerable attention and has shown potential as a
clinical target for intervention involves glutamate receptor
hyperactivity during withdrawal, specifically the N-methyl-D-
aspartate receptor (NMDAR). Acute ethanol exposure inhibits
NMDAR activity, and following chronic exposure a variety of
compensatory responses can occur resulting in receptor function
that may be up-regulated (Chandler et al., 1999; Hu and Ticku,
1995; Kalluri et al., 1998). During withdrawal, this up-
regulation has been shown to result in glutamatergic hyperex-
citability and cell death (Gibson et al., 2003; Hoffman et al.,
1995; Iorio et al., 1993).

Thomas et al. (1997, 2002) have shown that administration of
an NMDAR antagonist, MK-801, to neonatal pups during
ethanol withdrawal reduced some of the deficits associated with
prenatal ethanol exposure. The timing of MK-801 treatment,
however, appeared critical (Thomas et al., 2001). If MK-801 was
administered in the presence of ethanol, behavioral deficits were
exacerbated. In contrast, whenMK-801was administered during
ethanol withdrawal, behavioral deficits were reduced. NMDAR
antagonists such as MK-801 have numerous limitations as
potential treatments. MK-801 works via channel blockade and
demonstrates little receptor subtype specificity. Thus, its wide-
ranging actions can produce toxicity, may disrupt learning and
memory, and can have abuse/psychotomimetic potential (Grant
et al., 1991; Klein et al., 1999). Although the side effects of MK-
801 preclude its use clinically, success in animal models of early
ethanol exposure has generated interest in alternate NMDAR
antagonists that may be more viable. At least three types of
antagonists seem particularly promising; low-affinity, non-
competitive NMDAR channel blockers such as memantine
(Volbracht et al., 2006), which is currently used clinically for
treating Alzheimer's disease, NR2B subunit antagonists such as
ifenprodil or eliprodil (Nikam and Meltzer, 2002; Thomas et al.,
2004), and agents that modulate rather than block NMDAR
activity such as agmatine, which can act at the polyamine
binding site, resulting in allosteric modulation of the receptor.

Polyamines play a variety of roles in CNS development
(Slotkin and Bartolome, 1986) and can enhance NMDAR
activity (Williams et al., 1991; Williams, 1994). Increased
polyamine expression has also been reported in hippocampus,
striatum, cortex, and cerebellum during periods of ethanol
withdrawal (Davidson andWilce 1998; Gibson et al., 2003). The
concentration of polyamines is positively correlated with the
severity of withdrawal-induced tremor and seizure in ethanol-
dependant animals (Davidson and Wilce, 1998). Additionally,
they have been shown to potentiate ethanol withdrawal-induced
cell death in vitro (Prendergast et al., 2000; Gibson et al., 2003),
and are implicated in the pathogenesis of FAS (Littleton et al.,
2001; Sessa et al., 1987; Sessa and Perin, 1997). Taken together,
these data suggest that inhibiting polyamine activity during
ethanol withdrawal could reduce the severity of withdrawal-
induced CNS damage (Littleton et al., 2001; Shibley et al.,
1995), an effect that has been observed in vitro (Gibson et al.,
2003), but not in vivo.

Agmatine, a polyamine precursor, is known to inhibit the
NMDAR via binding at the polyamine site (Gibson et al., 2002).
Exogenous administration of agmatine attenuates glutamate-
induced neurotoxicity in cell cultures of rat cerebellum (Olmos
et al., 1999), hippocampus (Wang et al., 2006), and cortex (Zhu
et al., 2003). Additionally, agmatine reduces infarct and loss of
cerebellar neurons following in vivo focal or global ischemia
(Gilad et al., 1996; Kim et al., 2004) and brain weight loss
following ischemia in neonates (Feng et al., 2002). Behavior-
ally, agmatine dose-dependently attenuates behaviors associat-
ed with ethanol withdrawal, including stereotypy, tremor, and
wet-dog shakes, without affecting motor coordination in non-
dependent animals (Uzbay et al., 2000).

In the current study, a third trimester model of chronic
ethanol exposure was used to study the potential neuroprotec-
tive effects of agmatine on a cerebellar-mediated balance task.
Additionally, two exposure periods (PND 1-8 and PND 8-15)
were used to study temporal variables that could interact with
ethanol and/or agmatine.

2. Materials and methods

2.1. Subjects

Offspring were Sprague-Dawley rats born at the University
of Kentucky in the breeding colony maintained in the
Psychology Department. Parent animals were obtained from
Harlan Labs (Indianapolis, IN). Animals were mated nightly,
and the presence of seminal plugs the following morning
indicated copulation had occurred. Pregnant females were
individually housed in plastic cages in a temperature controlled
nursery (70°±2 F) on a 12 h light-dark cycle, with food and
water provided ad libitum. On the day following birth (PND 1)
litters were culled to 10 animals, maintaining a 1:1 ratio of
males to females whenever possible.

2.2. Neonatal drug administration

Litters were randomly divided into five treatment conditions.
These included 6 g/kg/day ethanol (ETOH), 20 mg/kg agmatine
(AG), 6 g/kg/day ethanol plus 20 mg/kg agmatine (ETOH/AG),
a maltose isocaloric control (MALT) and a non-treated control
(NTC). No more than one male and one female were assigned to
any treatment condition to avoid potential litter effects (Abbey
and Howard, 1973). Drugs were administered via gastric intu-
bation (.0278 ml/g bw) in a solution developed to nutritionally
mimic rat milk (West et al., 1984). Animals not receiving ethanol
(AG and MALT groups) instead received maltose, making the
solutions for all intubated groups isocaloric. Agmatine was
administered concurrently with the final ethanol exposure only,
in order to have AG on board during the final withdrawal
from ethanol.

Intubations were administered twice daily for eight days, at
1000 and 1400 h. Each intubation consisted of a 3 g/kg dose of



Fig. 1. Mean (±S.E.M). score on the balance task in 31–33 day old offspring
treated on PND 1-8 as a function of neonatal treatment, day and trial. ⁎ indicates
significant interactions (pb0.05) between the ETOH and the ETOH/AG
offspring.

Table 1
PND 33 body weights (in g)±S.E.M. by group and exposure period

Exposure period

PND 1-8 PND 8-15

Group n M SEM n M SEM

Ethanol (ETOH) 27 93.2⁎ ±2.1 24 94.9⁎ ±2.0
Agmatine (AG) 27 100.3 ±2.5 28 102.0 ±2.1
Ethanol+Agmatine (ETOH/AG) 20 94.0⁎ ±2.4 29 97.3⁎ ±1.6
Controls (MALT+NTC) 50 97.7 ±1.6 22 97.9 ±1.4

⁎ETOH exposed offspring differed from non ETOH exposed offspring
p'sb0.05.
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ethanol resulting in a dose of 6 g/kg/day ethanol. Litters were
intubated on either PND 1-8 or PND 8-15. Animals were
removed from the dam for approximately 20 min during each
intubation session. Heating pads were used to help maintain pup
body temperature during the intubation session. The solutions
were intubated using a syringe connected to PE-50 and PE-10
polyethylene tubing (Clay Adams). Feeding tubes were coated
with corn oil to ease esophageal passage.

On PND 21 animals were weaned and double housed with
one same-sex conspecific until PND 30, when they were
handled for 3 min and individually housed in preparation for
PND 31 testing. All handling and testing was performed by an
experimenter blind to treatment condition.

2.3. Balance testing

The balance apparatus consisted of a single elevated dowel
rod (114 cm long, 1.85 cm diameter), raised (75 cm) above the
ground, with a darkened escape box (21×10×17 cm) on one
end. The floor beneath the rod was padded in case of falls. Each
animal was habituated to the test room and escape box for 1 min
each. During the first trial, the animal was placed on the rod,
10 cm from the escape box. Upon successfully reaching the
escape box, the animal was allowed to remain in the box for
10 s, and then was removed to its home cage. If the animal did
not successfully reach the escape box (either fell or swung from
the rod), it was retrieved and placed in the escape box for 10 s,
before being returned to the home cage for a 30 s intertrial
interval. Subjects that were unsuccessful were retested at the
same distance on the rod. Following successful completion of a
trial, the distance on the next trial was increased by 13 cm.
Hence, completion of the first three trials required traversing
distances of 10, 23, and 36 cm, respectively. The dependant
measure was the most recent successfully completed distance (if
an animal fell on any trial, the last successfully completed
distance was recorded for that trial). Each subject received three
trials/day for three days as this schedule of testing in our
laboratory has previously been shown to be sensitive to neonatal
ETOH exposure. Following the final trial, body weights were
recorded for analysis. The experimental protocols employed in
this study were approved by the University of Kentucky Insti-
tutional Animal Care and Use Committee and are in compliance
with the National Institutes of Health Guide for Care and Use of
Laboratory Animals (Publication No. 85-23, revised 1985).

2.4. Blood ethanol concentrations

Pups from 12 additional litters were intubated daily at 1000
and 1400 on either PND 1-8 or PND 8-15 for measurement of
blood ethanol concentrations (BECs) to assess if there were age-
dependent differences in blood ethanol concentrations and/or
whether agmatine had any effects on ethanol metabolism. Blood
was collected after the final ethanol intubation by making a
1 mm cut at the tip of the subject's tail on PND 8 or 15 and
collecting 20 μl of blood. The BEC curve was established by
collecting samples at 30, 60, 120, 240, 480 and 600 min
following ethanol administration. In order to minimize stress,
only three samples were collected per animal. Data were
collected from four groups (ETOH 1-8, ETOH/AG 1-8, ETOH
8-15, ETOH/AG, 8-15), yielding 12 animals (6 males, 6
females) per group plus appropriate controls for standards.
Plasma was separated and frozen at −70 °F. BECs were assayed
using an Analox AM 1 Alcohol Analyzer (Analox Instruments).

3. Results

3.1. General statistical issues

A repeated measures ANOVA containing all variables was
conducted (with trial nested within day); this 5×2×2×3[3]
(Treatment×Exposure Period×Gender×Day[Trial]) analysis
yielded main effects of all between subjects variables, including
treatment F(1,235)=3.548, p=.008, exposure period F(1,235)=
10.404, p=.001, and genderF(1,118)=11.207, p=.001. Animals
in the earlier exposure period (PND 1-8) performed better than
those exposed in the later period (PND 8-15). Additionally,
female animals demonstrated enhanced performance. To better
understand the data, each exposure period was analyzed
separately. Of primary interest to these analyses was the
interaction of agmatine and ethanol. Prior to investigating this



Fig. 2. Mean (±S.E.M.) score on the balance task in 31–33 day old offspring
treated on PND 8-15 as a function of neonatal treatment, day and trial. No
differences in balance performance were noted between groups.
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interaction it was necessary to ensure that there were no
differences between the MALT and NTC control groups. Post
hoc analyses revealed no differences between controls for either
exposure period. Therefore, in subsequent analyses, controls
were collapsed into a single group and the data were examined
using a (2×2×2×3[3]) factorial design with ETOH, AG and
gender as between-group factors and day and trial as repeated
measures (trial nested within day). A probability value of .05 was
considered statistically significant.

3.2. PND 1-8 exposure balance performance

The repeated measures ANOVA revealed a significant
ETOH×AG interaction, F(1,118)=3.909, p=.05. As shown in
Fig. 1, treatment with agmatine during ethanol withdrawal
improved performance relative to ethanol exposed animals that
did not receive AG. There was also a significant ETOH×AG×
Day [Trial] interaction, F(4, 472)=3.393, p=.009. The interac-
tion was further broken down by conducting ANOVAs among
individual trials, revealing significant interactions on trial 5, F(1,
118)=7.285, p=.008; trial 6, F(1, 118)=5,707, p=.018; and trial
7, F(1, 118)=5.233, p=.024 (after Bonferroni corrections). In all
cases, these interactions reflected the poorer performance on the
balance task of the ETOH group relative to the ETOH/AG group.
Table 2
Blood ethanol concentration±SEM by group and exposure period⁎

30 min 60 min⁎⁎ 12

Group M±SEM M±SEM M

PND 1-8 ETOH 192.8±6.3 220.6±8.1 21
PND 1-8 ETOH/AG 201.9±10.7 217.7±4.7 21
PND 8-15 ETOH 228.7±10.1 257.8±8.3 24
PND 8-15ETOH/AG 202.9±18.7 252.5±11.9 25

⁎n's ranged from 5–8 subjects per cell.
⁎⁎1–8 and 8–15 exposed animals differed, p'sb0.05.
3.3. PND 33 body weights: PND 1-8 exposure

Body weights were recorded following the final trial of
testing on PND 33 and analyzed using a 2×2×2 (ETOH×
AG×Sex) ANOVA. Animals treated with ethanol weighed less
than controls, as shown by a main effect of ETOH F(1, 114)=
9.641, p=.002. These data are presented in Table 1, with group
means collapsed across sex for ease of presentation, since sex
did not interact with any other variables. Overall, male offspring
weighed more than females F(1,114)=54.181, pb .001. In
order to assess the potential contribution of body weight to
balance performance, correlations of body weight with per-
formance on the final trial collapsed across treatment condition,
as well as correlations within each treatment, were examined.
No significant correlations between weight and balance
performance were observed.

3.4. PND 8-15 exposure balance performance

As shown in Fig. 2, no performance differences between
neonatal treatment groups were detected for PND 8-15 exposed
animals. Interestingly, female animals performed better than
males F(1, 123)=8.70 p=.004.

3.5. PND 33 body weights: PND 8-15 exposure

A similar pattern of body weight results were observed in
PND 33 offspring exposed to drug or control on PND 8-15 as
described above for offspring exposed on PND 1-8. These data
are also presented in Table 1. As with PND 1-8 exposure, the
ETOH and ETOH/AG offspring weighed less than controls, as
shown by a main effect of ethanol F(1, 125)=5.043, p=.026.
Again, males weighed more than females F(1,125)=35.818,
pb .001. Performance and body weight correlations were not
investigated, due to the lack of performance differences within
this exposure period.

3.6. Blood ethanol concentrations

Blood ethanol concentrations (BECs) on PND 8 and PND 15
are presented in Table 2. No differences in BECs were observed
between the ETOH and ETOH/AG groups. The BEC was lower
in the PND 1-8 animals 60 min after intubation F(1,18)=
14.127, p=.002, marginally lower at 120 min F(1,22)=3.752,
0 min 240 min 480 min⁎⁎ 600 min

±SEM M±SEM M±SEM M±SEM

9.3±9.6 180.7±11.2 38.2±8.7 3.8±1.4
3.4±18.0 163.5±13.2 57.0±23.1 2.0±0.1
0.2±9.7 177.0±17.5 17.5±9.4 2.8±0.3
9.7±15.0 169.1±24.3 12.8±8.7 1.6±0.6
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p=.072, and higher at 480 min after intubation F(1,22)=5.239,
p=.037) compared with PND 8-15 exposed animals.

While area under the curve analyses (AUC) provide useful
information regarding total ethanol exposure, this was not pos-
sible in the current study since individual animals were sampled
at only three of the six time points, making the generation of
complete curves for each animal (a requirement of AUC
analyses) impossible. However, an estimate of the AUC values
was calculated using the mean for each group. The mean values
showed considerable overlap across treatment groups and expo-
sure ages: 124.5 (PND 1-8 ETOH), 124.6 (PND 1-8 ETOH/AG),
125.3 (PND 8-15 ETOH) and 122.7 mg/dl/hr (PND 8-15 ETOH/
AG).

4. Discussion

This study was designed to examine the effects of ethanol
during a period of CNS development that overlaps the human
3rd trimester “brain growth spurt” (Dobbing and Sands, 1979).
Chronic neonatal ethanol exposure during the first week of
postnatal life (PND 1-8) was associated with deficits in a
cerebellar-mediated balance task. Animals that received an
identical course of exposure, but were administered agmatine
with the final dose of ethanol, showed marked improvements on
the balance task. Agmatine alone had no effects on this behavior.
Although a difference in body weights between animals ad-
ministered ethanol and controls was observed, body weight did
not correlate with performance.

Neonatal ethanol exposure during the second week of
postnatal life (PND 8-15) did not impair balance. Females,
across treatment conditions, did perform better than males.
Although this difference was significant only among the PND
8-15 exposure group, this may reflect a more general sex
difference, as a similar trend was observed in the PND 1-
8 exposure group (main effect of sex, p=.071). The most likely
explanation for this gender difference in balance is due to body
shape, length, or composition differences between genders.

Findings from the blood ethanol analysis showed no
differences in BECs between ETOH and ETOH/AG animals,
suggesting that the protective effects of AG were not due to any
obvious effects on ethanol metabolism. Importantly, while the
peak BECs for both groups would be considered clinically high,
they are within the range displayed by human binge drinkers
(Urso et al., 1981). Blood ethanol levels varied over time as a
function of the age of exposure. The highest peak blood
concentrations were noted in pups exposed to ethanol during the
2nd postnatal week, however ethanol remained on-board longer
for pups exposed during the first postnatal week. The mean
AUC values for each group suggested few, if any, differences
between groups. Pierce and West (1986) have suggested that
peak BEC is a critical factor in the observance of fetal ethanol
effects, however this was not the pattern observed in the current
study. Thus, the behavioral deficits observed in the current
study were more likely due to the timing of ethanol exposure
rather than modest differences in BECs between exposure
periods, a conclusion supported by existing literature (Goodlett
and Lundahl, 1996; Goodlett et al., 1998).
Our analyses demonstrated that ethanol was cleared between
480 and 600 min following the final ethanol intubation. In CNS,
agmatine has a half-life of approximately 720 min (i.e., 12 h)
(Roberts et al., 2005). Agmatine is readily absorbed through the
stomach and intestinal walls (Molderings et al., 2002; for review
see Molderings et al., 2003) and crosses the blood–brain barrier
(Piletz et al., 2003). Taken together, these findings suggest that
agmatine was biologically available during and following the
onset of ethanol withdrawal.

While the balance paradigm used in this study clearly tests
cerebellar function, there is also almost certainly a learning
component. Since it is impossible to separate these components,
the results from this study may reflect both balance and learning
differences between groups. It is also possible that with
continued exposure and practice, the ethanol-exposed offspring
could improve to control levels. Motor rehabilitation has
previously been shown to improve performance on balance
related tasks following neonatal ethanol exposure (Klintsova
et al 2000). While the ETOH/AG group clearly showed
improved performance relative to the ETOH exposed offspring,
this effect was not observed on the last trial in which the ETOH/
AG group did not differ from either controls or the ETOH
exposed group. This may be due to the increased task difficulty
as the number of trials increased (since the distance required for
successful completion of each trial increased accordingly). Only
three days of testing were performed, based on the sensitivity of
this paradigm to ethanol-associated deficits in previous work,
however further work (i.e., extending the number of test days
and/or trials) should be able to better address these issues.

The current work is consistent with previous studies showing
cerebellar deficits among animals exposed neonatally to ethanol
(Thomas et al., 1998). Additionally, the importance of the PND
1-8 period is supported by observations that exposure to ethanol
during PND 4-6 predicts more severe damage than later periods
(Thomas et al., 1998). It is unclear why behavioral deficits are so
pronounced during this and not other postnatal exposure periods,
however one hypothesis involves the altered subunit composi-
tion of the NMDA receptor during development. NMDARs are
heteromeric tetramers (McBain and Mayer, 1994; Schorge and
Colquhoun 2003), composed of both NR1 and NR2 subunits.
NR1 subunits are ubiquitous in brain, and expressed as at least
eight splice variants (Zukin and Bennett, 1995). Four transcripts
for the NR2 subunit have been identified (NR2 A-D). These
display a spatially distinct pattern of expression, and are
implicated in the pharmacologic specificity of the receptor (for
reviews see Cull-Candy et al., 2001; Monaghan et al., 1998;
Scheetz and Constantine-Paton, 1994). Adding to this complex-
ity, various subunit combinations can vary widely in their phar-
macology (Wafford et al., 1993). A number of studies examining
recombinant NMDARs suggest that those containing NR2A or
NR2B subunits may display twice the sensitivity to ethanol as
those including NR2C or NR2D (Kuner et al., 1993; Masood
et al., 1994; Mirshahi and Woodward, 1995; for reviews see
Allgaier, 2002; Sucher et al., 1996). NR2B-containing receptors
also display the greatest sensitivity to polyamine stimulation,
due to their increased number of polyamine binding sites
(Williams, 1994; Williams et al., 1991). NR2B subunits



119B. Lewis et al. / Pharmacology, Biochemistry and Behavior 88 (2007) 114–121
predominate early in development and are replaced by other
NR2 subunits, depending on brain area. In the rat cerebellum,
NR2B and NR2C transcript levels change in opposite directions
during the first weeks of life (Monyer et al., 1994). Following the
first week of life, the highly expressed NR2B decline to un-
detectable levels, whereas initially undetectable NR2C rapidly
increase to adult levels (Zhong et al., 1995). Thus, develop-
mental differences in subunit composition may account for the
developmental differences in pharmacologic sensitivity to
ethanol and to polyamine manipulation observed in this study.

The extent of excitotoxic damage following chronic early
exposure to ethanol likely depends on a number of factors. Our
research highlights the particular importance of subunit
composition (by targeting an NR2B-associated modulatory
site) and developmental age (by varying ethanol exposure
between the first and second weeks of neonatal life) although
further work is clearly needed to directly assess the contribution
of these variables.

It should be noted that a main effect of exposure period was
observed, such that animals treated during the first week of life
showed better overall performance relative to those treated
during the second. This difference is not generally seen in other
behavioral paradigms within our lab, although to date we have
not previously assessed differences in balance performance
between these distinct developmental periods. Although no
explanation for this difference is immediately obvious, our
gavage procedure necessitates a period of brief maternal
separation, an experience that has been shown to alter behavior
and endocrine function in later development (for review see
Champagne andMeaney, 2001). Such separation procedures are
usually conducted across the first two weeks of life (Plotsky and
Meaney, 1993). Thus, the recognition that separation during the
first week may afford greater benefits than the second is novel,
and requires further investigation.

One of the most interesting findings from the current study is
that agmatine administered during ethanol withdrawal attenuated
behavioral deficits. Agmatine's ability to reduce such damage is
notable, however, agmatine does have additional actions in the
CNS. It has been proposed that it may be a putative endogenous
neurotransmitter. In addition, reports suggest that it may be a
ligand of the imidazoline receptor (Zhong et al., 1995), may block
neuronal nicotinic receptors (Li et al., 1994) and voltage-gated
calcium channels (Loring, 1990; Weng et al., 2003), interact with
alpha2-adrenoceptors (Molderings et al., 2000; Zheng et al., 2004)
and some serotonin receptor subtypes, (Dias Elpo Zomkowski
et al., 2004) and can inhibit nitric oxide synthase (Kim et al.,
2004). Given thewide range of actions of agmatine throughout the
CNS, it is possible that the protection observed in our study was
partly based on some of these additional mechanisms, indepen-
dent of NMDAR modulation. However, additional behavioral
work from our laboratory and others (Thomas et al., 2004), using
more specific NR2B or polyamine antagonists, as well as cell
culture studies specifically examining the effects of agmatine
and polyamines on glutamate-induced cell death (Gibson et al.,
2003) favor an NMDAR/polyamine modulation hypothesis.

It should be noted that while agmatine was administered only
on the last day of ethanol administration (and withdrawal), the
animals must have experienced varying levels of withdrawal
daily since ethanol was administered for seven days. Our
rationale for using a single treatment of agmatine was due to the
following: First, Thomas and colleagues have reported that
ethanol-associated behavioral deficits are attenuated with MK-
801 (an NMDAR channel blocker) when administration
occurred 21 or 33 h following ethanol administration (Thomas
et al., 2001). Since our treatment regiment involved a maximum
of ∼20 h between ethanol exposures, the withdrawal experi-
enced on a daily basis may be relatively minor compared with
the prolonged withdrawal following the final intubation.
Furthermore, repeated treatment with agmatine could produce
its own compensatory responses which would make interpre-
tation of the findings difficult. Finally, an advantage of a single
administration of agmatine is its ease for potential interventions
in human neonates; pharmacotherapies may be provided post-
natally, but are difficult to provide following prenatal binge-
withdrawal cycles.

Newborns of alcoholic mothers, particularly those whose
pattern of drinking may be characterized as binge-like in nature,
may experience a critical period of withdrawal following birth.
Although newborns may have been exposed to several binge-
withdrawal cycles in utero, the withdrawal associated with birth
may be unique, and perhaps uniquely damaging both due to its
prolonged nature as well as the challenges associated with
parturition. Excitotoxicity associated with such a withdrawal
may be further complicated by hypoxic episodes during birth.
Thus, the development of treatments addressing neonatal
ethanol withdrawal is crucial. The current findings provide
some intriguing insight into this problem and demonstrate the
potential efficacy of agmatine to attenuate such damage.
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